Using Colour to Model Outliers

نویسندگان

  • David Hasler
  • Sabine Süsstrunk
چکیده

Computer vision applications are able to model and reconstruct three dimensional scenes from several pictures. In this work, we are interested in the group of algorithm that register each image with respect to the model and aim at constructing a model of the scene. At the lowest level, most of these algorithms are comparing the pixel values of the image to the ones predicted by the model to refine the result. As research advances, the models are getting better and better, but no matter how complex they are, there will always be unpredictable situations that cannot be handled by the model. A recurring example is when an object appears in one image of the set, but in none of the others. The situation occurs, for example, when a moving entity crosses rapidly the field of view of the camera. In this work, we study the error generated by such an unexpected object at a pixel level and how colour can improve the estimation. We will derive the expected error distribution that this hypothetical object may cause. Our model is primarily intended as a basis for outlier removal in scene modelling algorithms. It gives a clear answer to whether, and with which confidence, a part of the image can be considered as part of the model or should be discarded, without using any dedicated thresholding scheme. The model is demonstrated on a trivial example where we match two images of a scene using a static camera. The example shows that the outlier distribution can be predicted by using the histograms of both images. We also show that by considering not only greyscale information, but also colour information, the outlier detection performance improves. We want to emphasise that the central part of this paper is the outlier modelling and not the outlier rejection scheme, which could be solved—for the trivial examples we are showing—by many other techniques.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of outliers types in multivariate time series using genetic algorithm

Multivariate time series data, often, modeled using vector autoregressive moving average (VARMA) model. But presence of outliers can violates the stationary assumption and may lead to wrong modeling, biased estimation of parameters and inaccurate prediction. Thus, detection of these points and how to deal properly with them, especially in relation to modeling and parameter estimation of VARMA m...

متن کامل

A robust least squares fuzzy regression model based on kernel function

In this paper, a new approach is presented to fit arobust fuzzy regression model based on some fuzzy quantities. Inthis approach, we first introduce a new distance between two fuzzynumbers using the kernel function, and then, based on the leastsquares method, the parameters of fuzzy regression model isestimated. The proposed approach has a suitable performance to<b...

متن کامل

Detection of Outliers and Influential Observations in Linear Ridge Measurement Error Models with Stochastic Linear Restrictions

The aim of this paper is to propose some diagnostic methods in linear ridge measurement error models with stochastic linear restrictions using the corrected likelihood. Based on the bias-corrected estimation of model parameters, diagnostic measures are developed to identify outlying and influential observations. In addition, we derive the corrected score test statistic for outliers detection ba...

متن کامل

The analysis of residuals variation and outliers to obtain robust response surface

In this paper, the main idea is to compute the robust regression model, derived by experimentation, in order to achieve a model with minimum effects of outliers and fixed variation among different experimental runs. Both outliers and nonequality of residual variation can affect the response surface parameter estimation. The common way to estimate the regression model coefficients is the ordinar...

متن کامل

A robust wavelet based profile monitoring and change point detection using S-estimator and clustering

Some quality characteristics are well defined when treated as response variables and are related to some independent variables. This relationship is called a profile. Parametric models, such as linear models, may be used to model profiles. However, in practical applications due to the complexity of many processes it is not usually possible to model a process using parametric models.In these cas...

متن کامل

Robust high-dimensional semiparametric regression using optimized differencing method applied to the vitamin B2 production data

Background and purpose: By evolving science, knowledge, and technology, we deal with high-dimensional data in which the number of predictors may considerably exceed the sample size. The main problems with high-dimensional data are the estimation of the coefficients and interpretation. For high-dimension problems, classical methods are not reliable because of a large number of predictor variable...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003